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TRANSVERSE OSCILLATIONS IN A PARTIALLY COMPENSATED ELECTRON BEAM 

A. S. Chikhachev UDC 533.9 

Discussion of the motion of not only electrons but also ions of a beam is significant in 
connection with the investigation of the problem of the stability of a quasisteady quaslrela- 
tivistic beam. Instabilities of a beam partially compensated with respect to deflection (in- 
stabilities of the "snake" type) are discussed in [I]. A model of two filaments formed by 
electrons and ions of a beam which can shift relative to each other was used. The structure 
of the beams in phase space is not important for the problems investigated in [i] --the trans- 
verse oscillations are analyzed from the motion of axial particles. 

The stability of an electron-lon beam relative to axisymmetric perturbations of the radii 
of the electron and ion components is discussed in this paper. We will assume that both the 
electrons and the ions of the beam are characterized by a nonzero emlttance. 

i. It is necessary in connection with the description of the beam particles with the 
help of a distribution function in the nonsteady case to find an integral of the motion which 
is not a consequence of the uniformity of the system, which is possible in the paraxlal ap- 
proximation [2, 3]. 

We will seek the electron distribution function in the form 

L = • -- 4~) 6(~ -- ~o), (1.1) 

where x is a normalization constant; B z = Vz/C; v z, longitudinal velocity of the electrons; 
c, speed of light; and I, a functional which depends on the transverse coordinates and veloc- 
ities. 

Satsifaction of the condition J << 78omc3/e, where J is the total current of the beam, 
e and m are the charge and mass of the electron, and V is a relativistic factor, is necessary 
for the validity of (i.i). The quantity 8 z is an approximate integral of the motion which 
is a consequence of conservation of the z-component of the generalized momentum. 

One can represent the function I in the case of an axisymmetric beam under discussion in 
the form 

[( I =  A,(t) ~--Aerl  CX'] * L~e r 2, (1.2) 
2Ae] -~- r2J --Ae(t) 
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where Eoe and Coe are constants; Coe has the meaning of the momentum of the transverse 
velocity v~ relative to the beam axis, i.e., Coe = rvl sin ~, and ~ is the angle between v 
and r 2. The constant Eoe is defined in terms of the beam emlttance. Using Maxwell's equa- 
tions div E = 4~p and rot H = 4~j/c, one can write the equation of motion of an electron in 

the form 

r+~(t) r c~ - - - ~ -  = O, ( 1 . 3 )  
r 

on the assumption of constancy of the electron and ion densities, where ~ = 2~ea/my(ni -- (ne/ 
72)) +~e/4, n e and n i are the electron and ion densities of the beam, Re = eH/ymc, and H is 
the external axial magnetic field. 

Since (by stipulatlon) I is an integral of the motion, then dl/dt = 0, which, together 
with (1.3), gives an equation for Ae(t): 

., 1!~r ~d ( 1 . 4 )  
2Ae .:t; ~A ; 

Integrating the electron distribution function over the velocities, we obtain 

where 

0, x < O ,  

,;(x) = ti x ~ O ;  
R2 e A e (t) I.e E~+ (1.5) 

Equation (1.5) permits introducing the beam radius Re(t) into (1.4) in place of Ae(t). 

One can describe the ion component of the beam with the help of an analogous model; we 
assume that one can neglect the longitudinal velocity of the ions, i.e., Viz -= 0. One can 
derive an equation for Ai(t) of the form (1.4) with the frequency ~(t) = 2~e'/M(n e --n i) + 
~i/4, where ~Hi = eH/Mc and M is the mass of the ion. 

Expressing the electron and ion densities in terms of the radii n e = Ne/~R e and n i = 
Ni/~RI, where N e and N i are the constant running densities of electrons and ions, we obtain 
the following equations for the radii: 

2e 

llv"Tt '+: (1.6) .h~ + ~ -7- - ,,v 

f + - 2 
, 2;' _ _ n + +  A ~  , (o , ,+n 2 ; - ( & - ~ 0 R . +  

~ 0 a 

The constants Roe and Roi, which can be expressed with the help of the constants Io and Ee, 
characterize the emittance (i.e., the phase volume in the coordinates r and r') of the elec- 
tron and ion components of the beam. The factors (2ea/m7)(N i --Ne/Y a) and (2ea/M)(N e --N i) 
are introduced for convenience. We note that equations of the form (I.6) (with an emittance 
different from zero) can be introduced in different ways (e.g., see [4], in which averaging 
of the equations of motion over an ensemble is used, and [3], in which a hydrodynamic descrip- 
tion is used). 

System (1.6) has meaning, strictly speaking, if Ri(t) - Re(t), since the equations of 
motion of ions and electrons of form (1.3) are valid only in the case of a uniform distribu- 
tion of the charge density in the region of motion of the particles. 

Satisfaction of the conditions 

t N+--  ~ )  = (Nr  NO, R,,~ = Ru~. t i  = 0 ( 1 . 7 )  



Fig. i 

is necessary for the identity of Eqs. (1.6), It follows from this that 

N~ M +  m7 3 

= Y ~ =  ~ ( M +  .+~)" 

The ratio of the densities cannot be arbitrary and differs little from the condition of 
force-free motion of the electrons for the case of a comparatively long-llved beam under 
discussion. 

If conditions (1.7) are satisfied, than 

' ~~ 0 (l. 8) 
~ R R a -- 

follows from (1.6) for E e = R i = R(c), where 

= N i -  (N~ - -  N 0 
2e2Ne V 2 -  I . 

yz M ~ m 7' R o = Ro~.= Roi. 

This equation has the steady solution R = Ro and first integral 

R q_ ~o-o C~ ( 1 . 9 )  

One can construct the trajectories in phase space R, R for (~.9) For large values of 
the constant C, (C, >> ~oRo) the phase trajectory intersects the = 0 axis at R~ = ~oRo/C~ < 

2 
C I 

2 

Ro and R~_ Roe ~.>>R" (Fig. 1). If at some time the beam has a very small radius R~ < Ro, 
a time is found at which the radius is very large Ra >> Ro; one can convince oneself of the 
fact that the beam is in a state with R >> Ro for a large part of the time. 

We also note the following with respect to the validity of the system of equations (1.6) 
describing an electron-lon beam. 

The equation for the electrons or ions is satisfied exactly at those times at which the 
radius of the corresponding component is less than the radius of the other one. The equa- 
tion for the component with the larger radius may be only valid; the more accurate the approx- 
imation, the smaller the difference in =he radii -- in this case an equation of motion of the 
form (1.3) breaks down in a small region of radii (IRe - Ril << Ri). 

The presence of the integral of motion (1.2) shows that the boundaries of the beam reach 
particles having a specific value of the momentum of the transverse velocity relative to the 
axis. For example, chemomencum should be =0 in the absence of a longitudinal magnetic field. 
Consequently, we have here a small fraction of the particles -- the smaller it is, the smaller 
is the difference in radii, only a small part of whose trajectories emerge from the region 
characterized by the sum of the electron and ion densities. The trajectories of the bulk of 
the particles lle completely in this region. This fact permits using the system (1.6) in the 
presence of small deviations of R e from R i. Taking accurate account of phenomena in a narrow 
boundary layer of the beam goes beyond the framework of this paper. 

Evidently, what has been said above is not very important in the case in which the solu- 
tion for R e and Riis of an oscillatory nature with a relatively small amplitude Ro = R e = R is 

- RiI << Ro. 
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However, the situation is altered if the difference in radii becomes sufficiently large, 
The equation for the component having the larger radius ceases to be valid, and consequently 
the validity of the entire system (1.6) breaks down. 

Validity of Eqs. (1.6) for small deviations of quantities from the equilibrium solution~ 
by which we do not necessarily have in mind in this case the steady solution with Re(t) 5 
Ri(~) , is sufficient for investigation of stability problems. 

2. Let us consider small perturbations of a nonsteady beam. To ~his end we will set 
R e = R(t) + rl and R i = R(t) + re, where rl, ra << R, inEqs. (1.7). We will assume that r~ 
and ra do not depend upon z. Then we obtain 

where 

- ~ , q  "~ 

R,  ~ r~. . I(" = O, 

( 2 . 1 )  

~ = 2e~ N ~ ( 2~  ~ ,,,._~ ( t + .'~) ; 
\ .q,a (M -7-,.7) § m~ a 

~ = >->x,, :u (l +-~) + 2~v ~ 
M ?  2 M 'c- m?  

One can obtain from these equations 

�9 . 3 ~ , ~  ) r = 0 
. , o '  

r + \ n . ,  " L: sP 

M ~ m~ 

(2.2) 

for the difference r = r~ -- re. Let us investigate the stability of this equation near the 
steady solution R = Ro. Setting R = Ro + El(t), Ri << Re, we have from (i,8) the equation 

~, - t -  e~N1 = O, 

where ~2 25o/Ro. I t  f o l l ows  from t h i s  t ha t  R = Re + a cos (~ + ~ ) ,  where a and r are the 
ampl i tude and phase of  o s c i l l a t i o n s  of  the beam rad ius ,  Now one can reduce Eq. (2+.2) ~o the 
form 

with 

( >) , a - I -  ( 7 e "  8 o ~  r ~ - r  2fl 2-ros~-R-ocos(r q:) § " =0 ,  (2.3) 

,,. 4 e " . A r  e 

It is well known that a Mathieu equation of form (2.3) with values for the coefficients 
of 2 + ~/~a = (n/2)a (n is an integer, n > 2) describes unstable solutions (with any value 
of the amplitude a). This instability is a parametric resonance (see [2]). Using the ex- 
pressions for ~ and ~o in the most interesting case (M >> my a, 7 >> !), one can write the 
resonance condition in the form 

~----- " T -  c �9 (2.4) 

Thus, parametric resonance occurs in the case of strictly determined values of the rela- 
tivistic factor. This instability denotes the creation of a long-lived beam with values of 

determined by (2.4) to be impossible. We note the independence of the existence of reso- 
nance on such factors as the beam current and radius. If the condition (2.4) is not satis- 
fied, no increase occurs in the difference of the radii of the electron and ion components 
of the beam, and one may expect that the beam will be stable (relative to long-llved perturba- 
tions). 

3. Equations (1.6) permit a steady solution not only upon satisfaction of the conditions 
(1.7). One can convince oneself that in the general case the equilibrium radius of the beam 
Re should satisfy the equations 



t 8e2 
Ro 4 -,- ~ (N~ - -  N 0 (R~ - -  R2o~) = 0; ( 3 . 1 )  

Y(~ 

8~___L i - x d  ( ~ .  - n~o) = 0 ( 3 . 2 )  

If one sets mHi = '"He = 0 and Eel and Roe = Ro as in See. 2, but assumes, however, the per- 
turbations to depend on z, i.e., sets rl = = s~,2eikz and takes account of the fact that 
one should express the total derivative wit~ respect to the time as 3/~t + ikBoc for the 
electron component, then in the most interesting case (M >> m7 a, y >> i) one can obtain from 
( 2 . 1 )  

- -  (o) - kv )"  s~ + oOx - r = O, 

where 

2 4e~ . 2 4e2Are 
O)e - -  taTaR ~ , ~ = .-:-2W~+ ;Mp% V ~-- 1~o c. 

The dispersion equation is of the form 

(o~ - 2o)~) ((~o - kv)~ - o ~ ) � 9  = ,++,o~.~ 

h plot of the function ~(,) = ( , a  _ 2w~)((, -- kv)a _ w~) for different values of the 
a 

wavenumber k is given in Fig. 2. If (kv)a < we or kv >> "e (Figs. 2a and b), then the dis- 
persion equation has four different real roots, which indicates stability of the system rela- 
tive to long-lived and short-lived perturbations. In the case kv = "e (Fig. 2a) there exist 
two complex-conjugate roots, one of which corresponds to an increase of the perturbations. 
With w e kv we get (w 2 2m~)w(w 2~e) = = 2 = -- -- WiWe, an approximate solution in the region w e >> 

i 3 =/3 I/3 
w >> mi ,a =--m~,e/2. From this follows the growth increment ~ ( / 3 " / 2  / )w i w e 

Thus, a steady beam is unstable relative to axisymmetric perturbations with the wave 
a 3 2 

number k = ,e/v = ~4e Ne/m Y Roy . The width of the instability shell Ak ~ wi/v. We note 
that not too lengthy a beam (with fixed ands), whose length I satisfies the condition Z < i/ 
k, may be stable. 

4. It is convenient for classification of the equilibrium states of a beam having a 
magnetic field to introduce the parameter ~ with the help of the equation 

8e 9+ N e -- N~ ~= ~+ ~ ;  >o. 

First we assume that the action of the magnetic field on the ions is small, i.e., ~ >> i. 

Then 

follows from (3.1) and (3.2). 
emittances of the ion and electron components o f  the beam satisfy Eq. 

One can derive 

Thus, equilibrium is possible only in the case in which the 
( 4 . 1 ) .  

"" [ 8e2 Ni 4e~ Ne ] 4eUNi r. 

�9 . [sAv~ +~N+] 4+t% 
r~ + ~ L M~o ~ ~ J - -  MR----~o ~ = 0 

in place of (2.1). If one assumes that N e >> N i >> Ne/7 a and introduces the parameter ~ = 
MNi/myNe, then one can represent the dispersion equation in the form 

(((o - -  kv)  2 - -  2o)~  - -  4 o J ~ )  (r ~ - -  2r = r 

i0 



, V -uJd 

c~ a c/ 
r- 

b 

Fig. 2 

This equation has four different real roots if ~_ >> ~. Thus, in a sufficiently strong 
magnetic field the equilibrium state of a beam with magnetized ions will be stable with 
respect to axisymmetrlc perturbations. 

We obtain from (3.1) and (3.2) upon consideration of the opposite case (N << I) Ro = 
~Roi, and R~e = my~e~'R~i/(8e=(Ni -- Ne/Y2)) +~R~ i. The equations for the deviations of the 
radii of the electron and ion components from the equilibrium value are of the form 

�9 " 8e 2 N e + N~ 4e2Ne 

which results in the dispersion equation 

As above, satisfaction of ~he condition ~i >>m~ is sufficient in order that this equation 
have four real roots. This indicates that equilibrium of a beam with magnetized ions in a 
strong magnetic field will also be stable relative to axisymmetric perturbations. 

The problem of the stability of an electron--Ion beam relative to axisymmetric perturba- 
tions has also been investigated in [6, 7]. The mechanism of "focused instability" [6] 
corresponds overall to the instability which we have discussed of a beam without a magnetic 
field, however, under several other conditions (we have investigated a beam with nonzero 
emittance, which may in the general case be different for the electron and ion components). 
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